文章编号: 0253-2239(2010)09-2634-05

折射率线性调制晶体中的稳态倍频研究

黄金哲 毛蓓丽 戴 菡 沈 涛 张留洋

(哈尔滨理工大学光信息科学与技术系,黑龙江哈尔滨150080)

摘要 从麦克斯韦方程出发,推导了折射率线性调制介质内的平面波倍频耦合波方程,并给出了稳态耦合波方程 的小信号解。由菲涅耳函数所描述的小信号解给出了不同于典型 sinc 函数的失谐函数结构。分析结果表明,折射 率线性调制晶体相对于普通非线性晶体具有更大的匹配带宽,从而拥有更大的可接受温度和匹配角以及光谱带 宽;然而这种带宽的增加是以牺牲整体的转换效率为代价的。值得关注的是通过选取特定的折射率调制参量可使 失谐函数平坦化,这降低了倍频晶体对于由环境温度、机械结构等原因造成的工作点漂移的灵敏度。通过高转换 效率下的数值模拟发现,失谐函数特性仍与低转换效率下的基本结论相符,只是在数值上略有不同且依赖于耦合 强度。

关键词 非线性光学;倍频;折射率调制;转换效率 中图分类号 O437 **文献标识码** A **doi:** 10.3788/AOS20103009.2634

Research on Static Frequency Doubling in Refractive-Index Modulated Crystals

Huang Jinjer Mao Beili Dai Han Shen Tao Zhang Liuyang

(Department of Optical Information Science and Technology, Harbin University of Science and Technology, Harbin, Heilongjiang 150080, China)

Abstract Starting from the Maxwell equations, a set of coupled plane-wave equations of frequency doubling in the refractive-index modulated medium is derived, and a solution to the equations is given under the small-signal approximation. The small-signal solution, a form composed of Fresnel functions presents a special dephasing structure which is different from the typical sinc function. Analysis shows that the refractive-index modulated crystal has a larger phase matching bandwidth than that in a normal nonlinear crystal, so possesses larger temperature, phase matching ange and spectral bandwidths; however the total conversion efficiency has to make sacrifice to pay for this enhancement of bandwidths. It should be noted that the dephasing function can be flattened with a suitable modulating parameter, which will lower the sensitivities of the frequency doubling crystal to erratic shifts of working points out of any thermal and mechanical reasons. It is found by a simulation in the high conversion efficiency case, the characteristics of dephasing function are still in accordance with the result from the small-signal approximation, except rendering a magnitude difference which depends on coupling strength.

Key words nonlinear optics; frequency doubling; refractive index modulation; conversion efficiency

1 引 言

非线性晶体的一阶极化率或折射率调制可以改 变其参变过程的输出特性。这种折射率的分布首先 可以在掺杂晶体中实现。利用晶体生长过程中自然 的偏析过程就可以改变掺杂比进而实现折射率调 制^[1]。在典型的提拉法晶体生长技术中该方法也可 用于改变晶体计量比从而控制折射率。另外,利用 波导制作中的离子注入、质子交换技术以及薄膜生 长技术也能够改变薄介质的纵向折射率分布。这些 改变非线性晶体或介质折射率的方法有别于其他进 行折射率调制的手段,如紫外曝光^[2]、显影^[3]、光折 变^[4]和飞秒激光辐照^[5]等。这些方法目前还难以应

收稿日期: 2009-09-01; 收到修改稿日期: 2009-11-06

基金项目:黑龙江省自然科学基金(F200509)资助课题。

作者简介:黄金哲(1972—),男,博士,教授,主要从事非线性光学与超快光学等方面的研究。E-mail: hjinjer@126.com

用到光学频率变换中。我们发现线性或周期折射率 调制能够展宽频率变换的相位匹配带宽,亦可以形 成多峰结构,实现多波长倍频^[6~8]。而这与传统的 增加相位匹配带宽的方案 ——多晶体串联结 构^[9~13]并不相同。折射率调制器件只需单片使用, 因而更具集成性。该调制器件使得参变激光器调谐 更加便利,而且对高功率宽带激光频率变换也具有 重要意义^[14]。然而在前期的工作中由于考虑了孔 径效应,结论并不直观^[7,8]。为了便于清晰地了解 折射率调制对于参变过程的影响。本文从平面波模 型出发,同时在小信号和大信号下研究线性折射率 调制对于倍频的作用。

2 理论模型

由麦克斯韦方程组可知,在非磁性倍频介质中 波动方程为

$$\nabla^{2} \boldsymbol{E} - \mu_{0} \boldsymbol{\sigma} \, \frac{\partial \boldsymbol{E}}{\partial t} - \mu_{0} \boldsymbol{\varepsilon}_{0} \, \frac{\partial^{2} \boldsymbol{E}}{\partial t^{2}} - \mu_{0} \, \frac{\partial^{2} \boldsymbol{P}}{\partial t^{2}} = 0, \quad (1)$$

其中 E 表示介质中的光电场; ε_0 , μ_0 分别表示真空介 电常数和真空磁导率; σ 表示介质的电导率;P 为极 化强度可表示为线性与非线性极化强度之和即: $P = P^{L} + P^{NL}$ 。为简化起见,仅考虑单轴晶体的 I 型 匹配,且假设介质无吸收即 $\sigma = 0$ 。由介电常数形式 $\boldsymbol{\varepsilon} = \varepsilon_0 (1 + \boldsymbol{\chi}^L) = \varepsilon_0 \boldsymbol{\varepsilon}_r$,式中 $\boldsymbol{\chi}^L$ 表示线性极化率张 量, $\boldsymbol{\varepsilon}_r$ 表示相对介电常数张量,波动方程可简化为

$$\frac{\partial^2}{\partial z^2} \boldsymbol{E}_m(z,t) - \mu_0 \boldsymbol{\varepsilon} \frac{\partial^2}{\partial t^2} \boldsymbol{E}_m(z,t) = \mu_0 \frac{\partial^2}{\partial t^2} \boldsymbol{P}_m^{\rm NL}(z,t).$$
(2)

设入射光束为沿着 z 轴传播的稳态平面波,其 光电场可表示为

$$E_m(z,t) = \frac{1}{2}A_m(z)\exp(\mathrm{i}k_m z - \mathrm{i}\omega_m t),$$

式中 m = 1,2 表示基波和谐波; k_m, ω_m 分别表示相 应波数和频率(波长为 λ_m); $A_m(z)$ 表示振幅。在慢 变振幅近似下,波动方程可转化为^[15]

$$2ik_{m0} \frac{dA_{m}(z)}{dz} - k_{m0}^{2}A_{m}(z) + \frac{\omega_{m}^{2}}{c^{2}}\varepsilon_{mr}A_{m}(z) = -2\mu_{0}\omega_{m}^{2}P_{m}^{NL}(z,t)\exp(-ik_{m0}z + i\omega_{m}t), \quad (3)$$

其中 $\sqrt{\epsilon_{mr}} = n_m(z), m = 1, 2$ 。对于线性折射率调制 有 $n_1(z) = n_{10} + \beta_1 z, n_2(z) = n_{20} + \beta_2 z, 式中 n_{m0}$ 为 光波在入射面处的折射率; β_m 为折射率沿着传播方 向的斜率。设在入射面(z = 0)处存在折射率失配量 $\Delta n = n_{10} - n_{20}, 则引入的相位失配量为 \Delta k_0 = 2k_{10} - k_{20} = \Delta n \frac{2\omega_1}{c}$ 。将 $n_1(z), n_2(z)$ 代入(3)式得到

$$\frac{dA_{1}(z)}{dz} - i \frac{2\pi}{\lambda_{1}} \beta_{1} z A_{1}(z) = i \frac{4\pi}{\lambda_{1}} \frac{d_{\text{eff}}}{n_{10}} A_{1}^{*}(z) A_{2}(z) \exp(-i\Delta kz), \qquad (4a)$$

$$\frac{\mathrm{d}A_2(z)}{\mathrm{d}z} - \mathrm{i}\,\frac{2\pi}{\lambda_2}\beta_2 z A_2(z) = \mathrm{i}\,\frac{2\pi}{\lambda_2}\,\frac{d_{\mathrm{eff}}}{n_{20}}A_1^2(z)\exp(\mathrm{i}\Delta kz)\,,\tag{4b}$$

由于 $\beta_m z \ll n_{m0}$,在上式中忽略了 $\beta_m^2 \overline{\eta}_{\circ}$ 对(4) 式进行归一化:令 $a_m = A_m / A_0$ 表示归一化振幅, $A_0 = |A_1(z = 0)|, \zeta = zL^{-1}, \kappa = 4\pi d_{\text{eff}}(\lambda_1 n_{10})^{-1} \approx 2\pi d_{\text{eff}}(\lambda_2 n_{20})^{-1}$ 为非线性系数。(4)式变为

$$\frac{\mathrm{d}a_1}{\mathrm{d}\zeta} - \mathrm{i}\,\frac{2\pi}{\lambda_1}\beta_1 L^2\,\zeta a_1 = \mathrm{i}\kappa A_0 L a_1^*\,a_2\exp(-\,\mathrm{i}\Delta k L\zeta)\,,\tag{5a}$$

$$\frac{\mathrm{d}a_2}{\mathrm{d}\zeta} - \mathrm{i} \, \frac{2\pi}{\lambda_2} \beta_2 L^2 \zeta a_2 = \mathrm{i} \kappa A_0 L a_1^2 \exp(\mathrm{i} \Delta k L \zeta). \tag{5b}$$

令 $B = \kappa A_0 L$,定义基波和谐波的相位调制参量分别为 $x_1 = 4\beta_1 L^2 \lambda_1^{-1}, x_2 = 2\beta_2 L^2 \lambda_2^{-1}$,同时令相位失配量为 $y = \Delta \kappa L / \pi (\Delta \kappa = \Delta \kappa_0)$;可改写(5)式为

$$\frac{\mathrm{d}a_1}{\mathrm{d}\zeta} - \mathrm{i}\pi \, \frac{x_1}{2} \zeta a_1 = \mathrm{i}Ba_1^* \, a_2 \exp(-\,\mathrm{i}\pi y \zeta). \tag{6a}$$

$$\frac{\mathrm{d}a_2}{\mathrm{d}\zeta} - \mathrm{i}\pi x_2 \zeta a_2 = \mathrm{i}Ba_1^2 \exp(\mathrm{i}\pi y \zeta). \tag{6b}$$

设 $b_1 = a_1 \exp(-i\pi x_1 \zeta^2/4), b_2 = a_2 \exp(-i\pi x_2 \zeta^2/2),$ 并令 $x = x_1 - x_2$ 为失配调制参量,则(6)式得到进一步简化:

$$\frac{\mathrm{d}b_1}{\mathrm{d}\zeta} = \mathrm{i}Bb_1^* b_2 \exp\left[-\mathrm{i}\pi(y\zeta + x\zeta^2/2)\right],\tag{7a}$$

$$\frac{\mathrm{d}b_2}{\mathrm{d}\zeta} = \mathrm{i}Bb_1^2 \exp[\mathrm{i}\pi(y\zeta + x\zeta^2/2)]. \tag{7b}$$

$$b_{2} = \mathrm{i}B\exp\left(-\frac{\mathrm{i}\pi y^{2}}{2x}\right)\frac{1}{\sqrt{|x|}}\left[-C\left(\frac{\sqrt{|x|}}{x}y\right) + C\left(\frac{\sqrt{|x|}}{x}(y+x)\right) - \mathrm{i}S\left(\frac{y}{\sqrt{|x|}}\right) + \mathrm{i}S\left(\frac{y+x}{\sqrt{|x|}}\right)\right]. \tag{8}$$

定义失谐函数

$$f(x,y) = |x|^{-1} \left\{ \left[S\left(\frac{y}{\sqrt{|x|}}\right) - S\left(\frac{y+x}{\sqrt{|x|}}\right) \right]^2 + \left[C\left(\frac{y}{\sqrt{|x|}}\right) - C\left(\frac{y+x}{\sqrt{|x|}}\right) \right]^2 \right\}.$$
(9)

则谐波功率(转换效率)为

$$\eta = P_2 = |b_2|^2 = B^2 f(x, y), \qquad (10)$$

式中C(t)和S(t)是菲涅耳(Fresnel)函数,且均为 奇函数,其定义式为

$$C(t) = \int_{0}^{t} \cos(\pi x^{2}/2) dx,$$

$$S(t) = \int_{0}^{t} \sin(\pi x^{2}/2) dx.$$
 (11)

相位匹配时,即△k=0,(10)式为

$$\eta = P_2 = B^2 |x|^{-1} \left[S^2 \left(\sqrt{|x|} \right) + C^2 \left(\sqrt{|x|} \right) \right].$$
(12)

3 倍频特性

由(10)式可知:转换效率 η 与参量 B^2 成正比, 即当入射基波的强度和晶体长度越大,转换效率也 越大,这符合倍频小信号解的基本规律。在 $\Delta k = 0$ 时,相位匹配仅存在于晶体入射面处。因此,在晶 体其他处所产生的相位失配将导致整体转换效率的 降低。此时,转换效率与相位调制参量的关系如 图 1所示。

随着调制参量的增大,失谐函数很快降低;其变 化类似于典型的倍频失谐函数 sinc²(x),只是边峰 较高且谷底的值不再为零。这一结果反映出调制参 量与所引起的相位失配近似成正比关系。

 $\Delta k \neq 0$ 时,失谐函数展现出丰富的振荡结 构。由菲涅耳函数的奇函数特性不难发现,失谐函数 f(x,y)构成相位失配量 y 的偶函数,并在 y = -x/2时达到极大值点(在x < 9.7范围内)。这意味 着此时存在一个最佳相位失配量 y =- x/2。图 2 给 出了不同调制参数下的一组失谐函数曲线。在x=0 时, f(x,y)自然地蜕变为函数 sinc²($\pi y/2$)。值得注 意的是虽然随着 x 的增加,失谐函数迅速减小,但其 边峰逐渐增高从而使函数分布变"胖";在 $x \approx 9.4$ 时,失谐函数形成了一个中心相对平坦的"帽沿儿" 结构,匹配带宽变为原来的约3.6倍。当继续增大 x时,失谐函数变成双峰并进一步形成多峰结构。 这种带宽的增加具有明显的实际意义。不但使得可 接受参数如调谐角、温度、光谱带宽增大,失谐函数 顶部的平坦分布还可承受调谐参数一定的起伏变 化,如机械精度不足形成的匹配角漂移等。图3给 出了失谐函数的三维分布情况。

图 2 不同调制参数下的失谐函数 Fig. 2 Detuning function with different modulation parameters

以上结果在高转换效率下也是成立的。利用差 分方法,可求解(7)式。例如取 B = 1.5(调制参量 x = 0时,最大转换效率达到 82%),可得到转换效 率随相位失配量的变化如图 4 所示。图中的横坐标 为 $y + x_0/2$,调制参量分别取 $x_0 = 0.8.8.15$ (由于 各曲线在 y 方向上分开较远,故采用了横坐标 $y + x_0/2$)。此时,失谐函数的分布与小信号结果很相似, 只是最佳失配量稍稍偏离 y = -x/2且与B值相关,

图 3 失谐函数的三维分布 Fig. 3 Three-dimensional distribution of the detuning function

如在 x ≈ 8.8 时形成一个典型的"帽沿儿"结构,匹 配带宽变为原来的约 4.3 倍,要比小信号时的结果 大一些。当进一步增大 x 时,失谐函数也会不断加 宽,但同时整体的转换效率将持续降低。例如在 x≈15 时形成独特的双平台结构。以上得到的谐波 输出特性不但有利于高功率宽带激光倍频,还可用 于免调谐的多波长激光倍频。

图 4 当 $x = x_0$ 时转换效率随相位失配量的变化 Fig. 4 Relation between the conversion efficiency and phase mismatch parameters with $x = x_0$

4 结 论

调制非线性晶体的折射率,可以改善其频率转 换的特性。而最简单的线性调制并不要求苛刻的加 工技术。对于线性调制倍频晶体,通过小信号和大 信号下的分析和模拟,发现谐波相位匹配带宽随着 调制参量增大而明显增加。在恰当的调制下,可以 获得宽而平坦的失谐曲线。同周期极化器件^[16,17] 相比,该特性同线性啁啾周期极化晶体中的情况类 似^[18,19],周期的改变相当于这里的折射率调制。当 然,倍频器件的实际应用不得不面对转换效率与匹 配带宽之间的矛盾。然而在允许的足够强的抽运条 件下,宽带器件在诸如高功率宽带激光及超短脉冲 频率变换方面无疑具有更广泛的应用价值。期待成

熟的宽带倍频晶体或器件在不久的将来出现。

- 1 C. A. Wang, D. Carlson, S. Motakef *et al.*. Research on macroand microsegregation in semiconductor crystals grown from the melt under the direction of August F. Witt at the Massachusetts Institute of Technology[J]. J. Cryst. Growth, 2004, 264(4): 565~577
- 2 Yu Chongxiu, Wang Xu, Liu Haitao et al.. Various index modulations of fiber grating and their implement[J]. J. Optical Electronics • Laser, 2002, 11(2): 137~139
- 余重秀,王 旭,刘海涛等.光纤光栅的不同折射率调制及其实 现方法[J]. 光电子・激光,2002,11(2):137~139
- 3 Jiang Genshan, Lü Yueguang, Huang Mingqiang. Experimental research on the refractive index modulation of silver-halide plate with dilution developing process [J]. Chinese J. Lasers, 2004, 31(2): 190~194

姜根山,吕跃广,黄明强. 银盐干板稀释显影折射率调制特性实验研究[J]. 中国激光, 2004, **31**(2): 190~194

- 4 Yang Lisen, Wu Ruixiang, Lu Gailing *et al.*. Experimental research of refractive index modulation degree about optically induced photonic lattices [J]. *J. Optical Electronics* Laser, 2008, **19**(11): 1530~1533 杨立森,武端详,陆改玲 等. 光诱导光子晶格折射率调制度的试
- 验研究[J]. 光电子激光, 2008, **19**(11): 1530~1533 5 Zhou Qinling, Liu Liying, Xu Lei *et al.*. Femtosecond laser induced darkening and refractive index change in K9 glass[J]. *Chinese J. Lasers*, 2005, **32**(1): 119~122 周秦玲,刘丽英,徐 雷等.飞秒激光辐照 K9 玻璃引起的暗化和 折射率变化[J]. 中国激光, 2005, **32**(1): 119~122
- 6 J. J. Huang, Y. M. Andreev, G. V. Lanskii *et al.*. Acceptable composition ratio variations of a mixed crystal for nonlinear laser device applications[J]. *Appl. Opt.*, 2005, 44(35): 7644~7650
- 7 Jin Jer Huang, Guang Jüji, Tao Shen *et al.*. Influence of composition ratio variation on optical frequency conversion in mixed crystals. I. gradual variation of composition ratio[J]. J. Opt. Soc. Am. B, 2007, 24(9): 2443~2453
- 8 Jin Jer Huang, Wei Gao, Tao Shen *et al.*. Influence of composition ratio variation on optical frequency conversion in mixed crystals. II. random variation of composition ratio[J]. J. Opt. Soc. Am. B, 2007, 24(12); 3081~3090
- 9 A. V. Smith, D. J. Armstrong, W. J. Alford. Increased acceptance bandwidths in optical frequency conversion by use of multiple walk-off-compensating nonlinear crystals [J]. J. Opt. Soc. Am. B, 1998, 15(1): 122~141
- 10 J. J. Zondy, C. Bonnin, D. Lupinski. Second-harmonic generation with monolithic walk-off-compensating periodic structures. I. theory[J]. J. Opt. Soc. Am. B, 2003, 20(8): 1675~1694
- J. J. Zondy, D. Kolker, C. Bonnin *et al.*. Second-harmonic generation with monolithic walk-off-compensating periodic structures. II. experiments [J]. *J. Opt. Soc. Am. B*, 2003, 20(8): 1695~1707
- 12 M. Brown. Increased spectral bandwidths in nonlinear conversion processes by use of multicrystal designs[J]. Opt. Lett., 1998, 23(20): 1591~1593
- 13 Jin Jer Huang, Yan Qinchang, Tao Shen *et al.*. Proposal of high quality walk-off compensated sum frequency generation of ultrashort pulses[J]. *Opt. Commun.*, 2008, 281(20): 5244~5248
- 14 Wang Jie, Yao Jianquan, Yu Yizhong et al.. Theory of wide band-width optical harmonic generation based on frequency mixing[J]. Acta Physica Sinica, 2001, 50(6): 1092~1096 王 杰,姚建铨,于意仲等. 基于混频效应的宽带激光谐波转换 理论[J]. 物理学报, 2001, 50(6): 1092~1096

- 15 J. A. Armstrong, N. Bloembergen, J. Ducuing *et al.*. Interactions between light waves in a nonlinear dielectric [J]. *Phys. Rev.*, 1962, **127**(6): 1918~1939
- 16 M. M. Fejer, G. A. Magel, D. H. Jundt *et al.*, Quasi-phasematched second harmonic generation: Tuning and tolerances[J]. *IEEE J. Quant. Electron.*, 1992, **28**(11): 2631~2654
- 17 Yang Jian, Li Xiaoqin, Yao Jianquan et al.. High-power temperature-tunable periodically-poled lithium niobate optical parametric oscillator [J]. Chinese J. Lasers, 2008, 35 (10): 1459~1462

杨 剑,李晓芹,姚建铨等.基于周期极化铌酸锂晶体的高功率 可调谐光参量振荡器[J].中国激光,2008,35(10):1459~1462

- 18 M. L. Bortz, M. Fujimura, M. M. Fejer *et al.*. Increased acceptance bandwidth for quasi-phase matched second harmonic generation in LiNbO₃ waveguides [J]. *Electron. Lett.*, 1994, **30**(1): 34~35
- 19 M. A. Arbore, O. Marco, M. M. Fejer. Pulse compression during second-harmonic generation in aperiodic quasi-phasematching gratings[J]. Opt. Lett., 1997, 22(12): 865~867